

MECHATRONICS TUTORIAL

GUIDE

48610 Introduction to Mechanical and Mechatronic
Engineering

Spring 2018

Terry.Brown@uts.edu.au

"Learners need to get involved with new knowledge in order to consolidate
their own understanding, and this cannot be done just through hearing

information being presented clearly and logically by an expert. They will
almost certainly need to try to use it themselves, under different

circumstances, if they are to make the knowledge their own." – Neil Mercer,
The Guided Construction of Knowledge - Talk Amongst Teachers and

Learners

Acknowledgements: Thank you to my students Jason Ho,
Atlas Huang and Peter de Jersey who have made significant

contributions to the content and development of this guide.

© Dr Terry Brown, School of Mechanical & Mechatronic Engineering, FEIT, UTS Page 2 of 30

Table of Contents

1. Introduction 3

2. Week 9 3

2.1 Background 3

2.1.1 Electronics Fundamentals (1 Hour 17 Minutes) Error! Bookmark not defined.

2.1.2 Learning Arduino (~30mins) 3

2.1.3 Installing the Arduino IDE 4

2.1.4 Wiring 6

2.1.5 Resistors 7

2.1.6 LEDs 8

2.1.7 Schematics 9

2.2 Tutorial Exercises 11

2.2.1 Exercise 1: Simple LED Circuit 11

2.2.2 Exercise 2: LED Challenge 12

2.2.3 Exercise 3: Blink 12

2.2.4 Exercise 4: Blink the LED on breadboard 13

2.2.5 Exercise 5: Blink SOS 14

2.2.6 Exercise 6: Add a Pushbutton to turn LED on and off 16

2.2.7 Exercise 7: Add a Pushbutton to Blink SOS 17

2.2.8 Exercise 8: Potentiometer with LED 17

2.2.9 Exercise 9: Potentiometer challenge 17

3. Week 10 18

3.1 Background 18

3.1.1 Electronics Fundamentals (~ 40 mins) Error! Bookmark not defined.

3.1.2 Learning Arduino (~ 30 mins) 18

3.2 Tutorial Exercises 18

3.2.1 Exercise 1: Use a Potentiometer to Generate an Analog Signal 18

Code for PotRead sketch 19

3.2.2 Exercise 2: Use Analog Signal 20

3.2.3 Exercise 3: LED and Photo Interrupter 22

3.2.4 Exercise 4: Line trace sensor 23

3.2.5 Exercise 5: Line trace sensor with serial plotter 24

3.2.6 Exercise 6: Line trace sensor with digital output to control a LED 26

3.2.7 Exercise 7: WPV desktop prototype 29

Arduino coding cheat sheet 30

© Dr Terry Brown, School of Mechanical & Mechatronic Engineering, FEIT, UTS Page 3 of 30

1. Introduction
Mechatronics is at the forefront of innovation and can be seen everywhere; from autonomous
vehicles, to home automation, to robot arms, to satellites, and more.
By the end of this module you will have the foundations required to go out and make your own
mechatronic systems.

2. Week 9
2.1 Background

2.1.1 Learning Arduino
You should have watched the following sections from the Lynda.com course Learning Arduino (aka
Up and Running with Arduino)

● Introduction (4 mins)
● 1. Getting Started (11 mins)
● 2. Electronic Components (16 min)
● 3. Arduino Uno (21 min)

Use the link from the Week 9 to 11 Folder in Weekly Learning Materials on UTSOnline. Alternatively,
you can access the course here:
https://www.lynda.com/Arduino-tutorials/Up-Running-Arduino/197594-2.html?org=uts.edu.au

2.1.2 Electronics Fundamentals
If you need to brush up on your high-school science knowledge of electricity, you should have
watched the following sections of the Lynda.com course Electronics Foundations: Fundamentals

● Introduction (4 mins)
● 1. Fundamentals of electricity (33 mins)
● 2. Multi-meter measurements (12 mins)

Use the link from the Week 9 to 11 Folder in Weekly Learning Materials on UTSOnline. Alternatively,
you can access the course here:
https://www.lynda.com/Development-Tools-tutorials/Electronics-Foundations-
Fundamentals/197537-2.html?org=uts.edu.au

https://www.lynda.com/Arduino-tutorials/Up-Running-Arduino/197594-2.html?org=uts.edu.au
https://www.lynda.com/Arduino-tutorials/Up-Running-Arduino/197594-2.html?org=uts.edu.au
https://www.lynda.com/Development-Tools-tutorials/Electronics-Foundations-Fundamentals/197537-2.html?org=uts.edu.au
https://www.lynda.com/Development-Tools-tutorials/Electronics-Foundations-Fundamentals/197537-2.html?org=uts.edu.au
https://www.lynda.com/Development-Tools-tutorials/Electronics-Foundations-Fundamentals/197537-2.html?org=uts.edu.au

© Dr Terry Brown, School of Mechanical & Mechatronic Engineering, FEIT, UTS Page 4 of 30

2.1.3 Installing the Arduino IDE

The Lynda.com course Learning
Arduino went through how to
download and install the Arduino IDE.
Only brief instructions are provided
here. The Arduino IDE can be
downloaded from the link shown
below.

You will be asked if you want to donate,
if you do not want to, just click the “just
download” button. Once downloaded
and installed, run the Arduino IDE. It
will look something like Figure 1. When
you plug the board in via the USB cable,
drivers should be downloaded and
installed automatically. Some
computers (especially macs) sometimes
have a problem with this. If you have
trouble, go to the Arduino
troubleshooting page. You can also
refer to this online guide.

https://www.arduino.cc/en/Main/Software Figure 1 - Arduino IDE

Before you can interact with, and upload code to, your Arduino, it’s important that you select the
correct board. After you plug in your board, select it from the Tools -> Board menu.

Figure 2 - Make sure you select your board after plugging in

Before you can upload code to your Arduino, it’s important that you select the correct port your
board is on. After you plug in your board, select it from the Tools -> Port menu (see below).

https://www.lynda.com/Arduino-tutorials/Up-Running-Arduino/197594-2.html?org=uts.edu.au
https://www.lynda.com/Arduino-tutorials/Up-Running-Arduino/197594-2.html?org=uts.edu.au
https://www.arduino.cc/en/Guide/Troubleshooting#toc1
https://www.arduino.cc/en/Guide/Troubleshooting#toc1
https://learn.sparkfun.com/tutorials/installing-arduino-ide
https://www.arduino.cc/en/Main/Software

© Dr Terry Brown, School of Mechanical & Mechatronic Engineering, FEIT, UTS Page 5 of 30

© Dr Terry Brown, School of Mechanical & Mechatronic Engineering, FEIT, UTS Page 6 of 30

2.1.4 Wiring
Wiring is required to connect electrical components together according to the schematics and circuit
diagrams. It is common practice to start from the power source and use electrical wires/cables to
connect each component one after another.

The process is similar to connecting a piping system. In this subject, we use a breadboard and jumper
cables for wiring (Refer to Figure 3 & 4). Breadboard and jumper cables are often used for
prototyping because they can be easily assembled and disassembled.

Have a look at Figure 4, which shows an x-ray of the board. You can see that the pins in the middle of
the board are connected horizontally, and the rails on the outside are connected vertically.

Breadboards should only be used for prototyping. Once circuit design has been finalised, printed
circuit boards (PCB) should be produced and used.

Figure 3 - Breadboard & Jumper Cables

Figure 4 - Breadboard "X-Ray"

© Dr Terry Brown, School of Mechanical & Mechatronic Engineering, FEIT, UTS Page 7 of 30

2.1.5 Resistors

If you look at circuit diagrams such as the one in Figure 9 carefully, you will
notice that there is always a resistor in front of each LED. The resistor is used
to reduce electrical current passing through the LED and to ultimately avoid
damaging the LED.

Use Ohm’s Law, V (voltage, volts) = I (current, amps) x R (resistance, ohms) to
determine required resistor. There are online calculators that help you to
calculate the most suitable resistor size for your project.

Figure 5 Resistor Example

The easier way to work out the resistance of a resistor is to use a multi-meter
such as the one shown here. Basic multi-meters can be very inexpensive and
can be found for less than $10. For example, here’s a link to a basic multi-
meter from Jaycar:

https://www.jaycar.com.au/low-cost-digital-multimeter-dmm/p/QM1500

Figure 6 - Digital Multi-meter

The harder way to work out the resistance of a resistor is to use the colour markings on the resistor
to determine the resistor value. This is useful when you do not have a multi -meter.

Here are the steps to read the colour code:

1. Identify the band that is slightly farther away from the others (e.g. the brown band in Figure 7)

2. Position the band identified in Step 1 to the right-hand side

3. Read the colour bands from left to the right and ignore the last one on the right

4. Different colour represents different value:

Figure 7 Resistor Colour Code

The resistor value in Figure 5 is 339Ω with +/-1% tolerance.

http://www.ohmslawcalculator.com/led-resistor-calculator
https://www.jaycar.com.au/low-cost-digital-multimeter-dmm/p/QM1500

© Dr Terry Brown, School of Mechanical & Mechatronic Engineering, FEIT, UTS Page 8 of 30

2.1.6 LEDs

LEDs (Light emitting diodes), like all diodes, do not work if they are plugged in the wrong way.

Electrical current goes ‘into’ the LED at the anode (positive terminal) and ‘comes out’ at the cathode
(negative terminal). Figure 8 shows a few tips on how to identify the anode and cathode.

LEDs do not follow Ohm’s Law. They have a voltage drop across them and have a safe, or limiting,
current that may flow through them without damaging the LED. Resistors must be used to limit the
amount of current flowing through a LED. Use Ohm’s Law to work out the required resistance. First,
subtract the voltage drop across the LED from the voltage in the circuit (or part of the circuit), then
divide by the allowable current. There are also online calculators to help you work out the required
resistor.

Figure 8 How to identify anode and cathode of an LED

http://www.ohmslawcalculator.com/led-resistor-calculator

© Dr Terry Brown, School of Mechanical & Mechatronic Engineering, FEIT, UTS Page 9 of 30

2.1.7 Schematics

An important step to learning circuitry is to learn how to read schematics. Figure 9 is the schematic
of an Arduino board. It is for demonstration purpose only, it is NOT a requirement to understand
schematics as complicated as the one below, this is an example of what you might be using in
industry. The tutorial exercises will help you to start reading, understanding and implementing
simple schematics. Figure 10 lists a few electrical symbols that are frequently used in electronics
projects. These electrical symbols help you to identify the components in the schematics. The
highlighted ones in Figure 10 are used in this subject and it is a requirement to know how they are
connected. You can test yourself by identifying all the LEDs in Figure 9. Do you notice that there is a
component that is always next to a LED?

Figure 9 Schematics of Sparkfun RedBoard

© Dr Terry Brown, School of Mechanical & Mechatronic Engineering, FEIT, UTS Page 10 of 30

Figure 10 - Electrical Symbols

© Dr Terry Brown, School of Mechanical & Mechatronic Engineering, FEIT, UTS Page 11 of 30

2.2 Tutorial Exercises

For these exercises we have provided you with a mechatronics kit that has all the components
needed (you will need to share one kit between 2-3 students). However, you will need to have a
computer with a USB port to connect and run the Arduino board. The power source provided in this
tutorial is through the Arduino board. We will use the Arduino as a power source and use its
microcontroller and code to control the circuits we create.

For these exercises we have provided both the schematic and the wiring diagrams. You should make
sure you use and refer to both as you create the circuit. Usually in practice you would not have a
wiring diagram, just the schematic. Resist the temptation to just copy the wiring diagrams. As you
work your way through the exercises try to first implement the schematic without referring to the
wiring diagrams.

The Arduino should ALWAYS be disconnected whenever you are wiring. Make sure the Arduino is
unplugged from power (i.e. disconnect the USB cable).

2.2.1 Exercise 1: Simple LED Circuit

Attempt to wire up the circuit shown below as a schematic. Make sure the Arduino is unplugged
from power (i.e. disconnect the USB cable). The Arduino should ALWAYS be disconnected whenever
you are wiring.

Use the digital multi-meter (DMM) to measure the resistor values and check that you have the
correct resistor. Use of the DMM is explained in the Lynda.com course Electronics Foundations:
Fundamentals. If you don’t know how to use the DMM, ask other students at your table if they know
and ask them to show you. If no students at the table know, ask the tutor.

If you don’t have a red LED, use whatever colour you have.

Figure 11 - Arduino LED Schematic

Two alternative wiring diagram solutions are shown below. Do you understand the difference
between the two? Do you understand why they both work? Discuss with other students at your
table.

https://www.lynda.com/Development-Tools-tutorials/Electronics-Foundations-Fundamentals/197537-2.html?org=uts.edu.au
https://www.lynda.com/Development-Tools-tutorials/Electronics-Foundations-Fundamentals/197537-2.html?org=uts.edu.au

© Dr Terry Brown, School of Mechanical & Mechatronic Engineering, FEIT, UTS Page 12 of 30

Figure 12 - Wiring diagrams for two alternate wiring methods

Connect the USB cable to the Arduino to provide power to the circuit. The LED should light up. If it
doesn’t, check that the power light indicator and the onboard LED on the Arduino board are lit up. If
they are not lit up there may be a problem with the cable or the Arduino. If they are, check that the
LED is connected the right way. If it still does not light up, try another LED.

2.2.2 Exercise 2: LED Challenge
In this challenge, you are required to think about and modify the circuit in Exercise 1 and complete
the following:

1. Calculate the current in the circuit
a. Assume LED resistance is negligible (note that LEDs do not follow Ohm’s Law)
b. Attempt to use LED data: Typical working voltage of a LED: yellow/green/red/orange

1.8-2.2V, blue 2.6-3.0V.
c. Recall/look up Ohm’s Law and/or use an online calculator.

2. Connect another LED in series with the existing LED
3. Connect another LED in parallel with the existing LED (make sure there is a resistor limiting

current to all LEDs)
4. Discuss with your group the current value you calculated and the differences in LED

brightness for each circuit

2.2.3 Exercise 3: Blink

In this exercise you will use the Arduino microcontroller and code to make the Arduino’s onboard
LED blink. You will need to:

1. Download, install and run the Arduino IDE software as shown above.

2. Connect the Arduino board to your computer (via USB cable)

3. Open the Blink example in the Arduino IDE

4. Upload the code to the Arduino board

If all is well, you should see something like the following:

http://www.ohmslawcalculator.com/led-resistor-calculator

© Dr Terry Brown, School of Mechanical & Mechatronic Engineering, FEIT, UTS Page 13 of 30

If it takes a long time and you get an error something like the following, it is most likely because
you have not selected the correct port. Refer to the instructions shown above.

5. Once you have uploaded the code and observed the LED blinking, change the delay values,
i.e. delay(1000) in the code, upload the code again and observe how the LED’s blinking
frequency changes.

2.2.4 Exercise 4: Blink the LED on breadboard
In this exercise we’ll use the Arduino to control the LED on our breadboard.

● Unplug the USB

● Disconnect the lead from the 5V supply on the Arduino and plug it into digital pin 13.

● Plug the USB cable back into the Arduino

You should see the LED on the breadboard blinking in time with the Arduino onboard LED.
● Adjust the delay values in the code, re-upload the code to the Arduino and observe both LEDs

blinking together at the adjusted rate

The onboard LED can be referred to as LED_BUILTIN in code and is connected to digital pin 13.

● Replace LED_BUILTIN with 13 in the pinMode function and the two digitalWrite functions.

● Re-upload the code and observe that nothing changes in the functioning of the LEDs

● Now change the three 13s to 12 in the code and upload to the Arduino. Now neither LED light

up.

● Unplug the Arduino. Disconnect the lead from digital pin 13 and connect it to Pin 12. Plug in

the Arduino. You should now see only the LED on the breadboard blinking.

Writing a reference number in multiple places like this is a very BAD way to write code. If we decided

that we want the LED to be controlled from PIN 11 we would have to find all the places where we have

used 12 in the code. Instead, we should declare a variable, i.e. give the number a name that can be

referenced anywhere in the code. We will declare the variable as an integer. E.g.

● add the following to the code

int myLed = 12;

just above

// the setup function runs once when you press reset or power the board

void setup() {

 then replace everywhere you had 12 with myLed. Upload the code and observe that nothing

changes.

● Now change myLed = 12 to myLed = 11 and upload the code. The LED should stop blinking.

© Dr Terry Brown, School of Mechanical & Mechatronic Engineering, FEIT, UTS Page 14 of 30

● Now unplug the Arduino. Disconnect the lead from digital pin 12 and connect it to Pin 11. Plug

in the Arduino. You should now see only the LED on the breadboard blinking again.

2.2.5 Exercise 5: Blink SOS
In this exercise we’ll modify the code from the previous exercise. By the end of the exercise we’ll
have the Arduino blinking SOS in Morse code.

● Save the Blink sketch as BlinkSOS

● Modify the code so the on-board LED blinks SOS (see Morse code table and starter code below)

● Verify that the code is correctly written. This is called “compiling” the code. It only tells you if

you have used the language correctly. It doesn’t tell you if your code will do what you think it

should/will do.

If all is well you should see something like the following:

If not, you will get an error message with an indication of where the compiler thinks the error is.
Note: SOS in Morse code is 3 times short, 3 times long and 3 times short (refer to the chart below)

*Taken from https://morsecode.scphillips.com/morse2.html
*In the table, “.” means short and “-“ means long

You can use the code below to get started. You can copy, paste and then modify parts of this code to
create your own section of code.

https://morsecode.scphillips.com/morse2.html

© Dr Terry Brown, School of Mechanical & Mechatronic Engineering, FEIT, UTS Page 15 of 30

// the setup function runs once when you press reset or power the board
void setup() {

 // initialize digital pin LED_BUILTIN as an output.

 pinMode(LED_BUILTIN, OUTPUT);

}

// the loop function runs over and over again forever
void loop() {

 // Flash the LED in the 'S' Sequence.

 // This is three 'dots' - or 3 short flashes

 // Flash once

 digitalWrite(LED_BUILTIN, HIGH); // turn the LED on (HIGH is the voltage

level)

 delay(100); // wait for a short period of time

 digitalWrite(LED_BUILTIN, LOW); // turn the LED off by making the voltage

LOW

 delay(100); // wait for a short period of time

 // Flash a second time

 digitalWrite(LED_BUILTIN, HIGH); // turn the LED on (HIGH is the voltage

level)

 delay(100); // wait for a short period of time

 digitalWrite(LED_BUILTIN, LOW); // turn the LED off by making the voltage

LOW

 delay(100);

 // Flash a third time

 digitalWrite(LED_BUILTIN, HIGH); // turn the LED on (HIGH is the voltage

level)

 delay(100); // wait for a short period of time

 digitalWrite(LED_BUILTIN, LOW); // turn the LED off by making the voltage

LOW

 delay(100);

 //Flash the LED in the 'O' Sequence.

 // This is three 'dashes' - or 3 long flashes

 // ----------- INSERT YOUR CODE HERE! ----------- //

 //Flash the LED in the 'S' Sequence.

 //This is three 'dashes' - or 3 long flashes

 //Wait a litle while so that our SOS messages don't blend together

 // ----------- INSERT YOUR CODE HERE! ----------- //

 //Wait a few seconds so that there's a pause between our SOS messages

 delay(3000);

}

If you are thinking “there must be a better way than writing similar code repetitively in order to do
this”, that’s good. Because there is. But we need to use control structures and subroutines or
subfunctions. We will do this next week.

© Dr Terry Brown, School of Mechanical & Mechatronic Engineering, FEIT, UTS Page 16 of 30

2.2.6 Exercise 6: Add a Pushbutton to turn LED on and off
In this exercise, you will need to:

• Find the Button example under Examples/ 02.Digital/

• Connect a 10K resistor and the push button to pin 2 (refer to the schematic and wiring
diagrams below) and also https://www.arduino.cc/en/tutorial/button. Have we wired a pull-
up resistor or a pull-down resistor?

Figure 12 - Pushbutton Schematic

Figure 13 - Connect the pushbutton across the middle of the breadboard like this

• Upload the code

Test whether the code is working.

When the pushbutton is open (unpressed) there is no connection between the two legs of the
pushbutton, so the pin is connected to ground (through the pull-down resistor) and we read a LOW.

We can also wire the circuit the opposite way, with a pullup resistor keeping the input HIGH, and
going LOW when the button is pressed. Doing this, the behavior of the sketch will be reversed, with
the LED normally on and turning off when you press the button.

https://www.arduino.cc/en/tutorial/button

© Dr Terry Brown, School of Mechanical & Mechatronic Engineering, FEIT, UTS Page 17 of 30

2.2.7 Exercise 7: Add a Pushbutton to Blink SOS
In this exercise, you will need to:

● Understand what you have done in the previous exercises

● Adjust the code and your circuit so that when the push button is pressed, the LED on the

breadboard blinks SOS

2.2.8 Exercise 8: Potentiometer with LED
A potentiometer (or ‘pot’ for short) is a variable resistor. Create the circuit shown below.

Figure 14 - Arduino Potentiometer Schematic

Figure 15 - Potentiometer Wiring

If you don’t have a 330Ω resistor a 220Ω will do. If you don’t have a green LED, any other colour will
do.

Try turning the potentiometer and observe how the brightness of the LED changes.

2.2.9 Exercise 9: Potentiometer challenge
A potentiometer (or ‘pot’ for short) is a variable resistor. Create the circuit shown below.

• Think about how you can add a different colour LED to the circuit so that when one LED
gets brighter the other LED gets dimmer and vice versa.

• Discuss with your group and draw a schematic.

• Don’t forget to include a resistor in series with the second LED

• Show your schematic to your tutor before you wire it up to avoid damaging any
component

Solution shown at bottom of page but have a go at it yourself first.

Exercise 9 solution: connect the second LED to the spare pin of the potentiometer

© Dr Terry Brown, School of Mechanical & Mechatronic Engineering, FEIT, UTS Page 18 of 30

3. Week 10
3.1 Background

3.1.1 Learning Arduino
You should have watched the sections indicated in the previous week’s background and the following
sections from the Lynda.com course Learning Arduino (aka Up and Running with Arduino)

● 8. Advanced Projects (at least Programming the Uno to output Morse code 6m 53s)

Use the link from the Week 09 and 10 folder in Weekly Learning Materials on UTSOnline.

Alternately, you can access the course here:
https://www.lynda.com/Arduino-tutorials/Up-Running-Arduino/197594-2.html?org=uts.edu.au

3.1.2 Electronics Fundamentals (~ 40 mins)
You should have watched the sections indicated in the previous week’s background and the following
sections from the Lynda.com course Electronics Foundations: Fundamentals

● 3. Power (27 mins)

Use the link from the Week 09 and 10 Folder in Weekly Learning Materials on UTSOnline.

3.2 Tutorial Exercises
The power source provided in this tutorial is through the Arduino board. We will use the Arduino as a
power source and use its microcontroller and code to control the circuits we create.

3.2.1 Exercise 1: Use a Potentiometer to Generate an Analog Signal
In this exercise you will use the Arduino IDE’s Serial Monitor to view the voltage change in the circuit
as you adjust the potentiometer. Create the circuit shown below. Make sure the Arduino is
unplugged from power (i.e. disconnect the USB cable). The Arduino should ALWAYS be disconnected
whenever you are wiring.

If you don’t have a 220Ω resistor a 330Ω will do. If you don’t have a green LED, any other colour will
do.
An indicative wiring diagram is provided below. Try to complete the wiring BEFORE looking at the
wiring diagram below. Make sure you understand how to read the schematic and how it gets
implemented in a physical circuit. Do not just copy the wiring diagrams. Your wiring doesn’t have to
be exactly the same as the examples shown.

https://www.lynda.com/Arduino-tutorials/Up-Running-Arduino/197594-2.html?org=uts.edu.au

© Dr Terry Brown, School of Mechanical & Mechatronic Engineering, FEIT, UTS Page 19 of 30

Before connecting the USB cable to power the board:

• Check your wiring. Get a person in the group who has not done (much/any of) the wiring
to check the wiring. If in doubt, ask the tutor to check your wiring.

• Once checked, connect the USB cable to the Arduino.

• Adjust the potentiometer to observe the LED brightness change.
Now we will use the Arduino to read the voltage in the circuit.

• Create a new Sketch called PotRead. Copy and paste the code provided below (replace all
of the default code) and upload the sketch to the Arduino board.

Code for PotRead sketch

/*
Potentiometer Analog Sensor
UTS 48610 - Introduction to Mechanical and Mechatronic Engineering - Autumn 2017
Written By Jason Ho, modified by Terry brown
Any Questions? Try finding the answer for yourself before just asking your tutor.
Feeling confident? Try modifying or adding to this code to add special features for your WPV i.e Flashing lights or
even a data transmitter.
Additional Notes:
Camelback notation: You will see words like "statusLightsAreGood" with a lowercase first letter.
*/

#define Serial_Update_Interval 500
#define Analog_Pin A1

unsigned long oldMillis; // this stores the last value of millis when the Serial monitor printed the value of A1

void setup()
{
 Serial.begin(57600);// this connects the serial port
 pinMode(Analog_Pin, INPUT);// this sets the pin’s mode to be an input
 Serial.println("-----------------------------");
 Serial.println("UTS IMME Analog Pot Reader");
 Serial.println("-----------------------------");
 Serial.println("");
}

void loop()
{
 if (millis() - oldMillis >= Serial_Update_Interval) { // this checks if the interval time has passed (to avoid
spamming the monitor)
 Serial.print("Analog ");

© Dr Terry Brown, School of Mechanical & Mechatronic Engineering, FEIT, UTS Page 20 of 30

 Serial.print("A1");
 Serial.print(" Reading: ");
 Serial.println(analogRead(Analog_Pin));
 oldMillis = millis();// this stores the current time which will be used to check if the interval time has passed for
the next iteration
 }
}

• Use the serial monitor to see the output from the
potentiometer

• You will need to change the baud rate to match the

rate set in the code

• Adjust the potentiometer and observe the output in the serial
monitor and the LED brightness change.

• the numbers will vary between 0 and 1023. The reason for this is that
the Arduino is doing an analog to digital conversion and the analog
pin is converting a voltage between 0 and 5V to a discreet number.

3.2.2 Exercise 2: Use Analog Signal
In this exercise you will use the value recorded by the analog pin to adjust the brightness of another
LED.

• Add a red (or any other colour) LED to the circuit (don’t forget the resistor) and connect
the LED to digital pin 2 as shown below:

© Dr Terry Brown, School of Mechanical & Mechatronic Engineering, FEIT, UTS Page 21 of 30

• We will add the code #define myLED 2 which uses #define to declare a constant (#define is
a way of defining a constant in C. It can be useful but requires care in its use. Read more
about it here.)

• we can now use the name myLED to refer to digital pin 2 elsewhere in the code

• we now need to set pin 2 as an output. Have go at doing that on your own before looking
to see if you can find it in the modified code provided below.

• We will also use the if…else control structure to control the new LED based on the value

of A1. Read more about it here. Can you find where it is used in the code and understand
how it works?

• Create a new sketch. Name it whatever you like. Cut and paste and upload the following
code:

/*
Potentiometer Analog Sensor to control LED
UTS 48610 - Introduction to Mechanical and Mechatronic Engineering - Autumn 2017
Written By Jason Ho, modified by Terry Brown
*/

#define Serial_Update_Interval 500
#define Analog_Pin A1
#define myLED 2

unsigned long oldMillis; // this stores the last value of millis when the Serial monitor printed the value of A1

void setup()
{
 pinMode(myLED, OUTPUT);// this sets the pin’s mode to be an output
 Serial.begin(57600);// this connects the serial port
 pinMode(Analog_Pin, INPUT);// this sets the pin’s mode to be an input
 Serial.println("-----------------------------");
 Serial.println("UTS IMME Analog Pot Reader");
 Serial.println("-----------------------------");
 Serial.println("");
}

void loop()
{
 if (millis() - oldMillis >= Serial_Update_Interval) { // this checks if the interval time has passed (to avoid
spamming the monitor)
 Serial.print("Analog ");
 Serial.print("A1");
 Serial.print(" Reading: ");
 Serial.println(analogRead(Analog_Pin));
 oldMillis = millis();// this stores the current time which will be used to check if the interval time has passed for
the next iteration
 }
 if (analogRead(Analog_Pin) >= 700) { // this checks if Analog_Pin is greater than or equal to 700
 digitalWrite(myLED, HIGH); // turn the LED on (HIGH is the voltage level)
 }
 digitalWrite(myLED, LOW); // turn the LED off by making the voltage LOW
}

• Observe the serial monitor values and watch the new LED turn on and off as you adjust
the potentiometer.

• Adjust the code to experiment with how it works to further your understanding.

https://www.arduino.cc/reference/en/language/structure/further-syntax/define/
https://www.arduino.cc/reference/en/language/structure/control-structure/if/

© Dr Terry Brown, School of Mechanical & Mechatronic Engineering, FEIT, UTS Page 22 of 30

3.2.3 Exercise 3: LED and Photo Interrupter
In this exercise you will use a photo interrupter to turn a LED on and off

• Attempt to create the circuit shown in the schematic below. Be careful. Have your circuit

checked before connecting power.

• Refer to the photo interrupter drawings and schematic when connecting the photo
interrupter (be careful, the terminal lettering isn’t obvious. Look carefully at the top of the
photo interrupter and you will see the terminal letters. Also note the chamfered edge on
the top left edge (front view) to help you correctly orient and connect the photo
interrupter.

• Attempt to interpret the circuit schematic and the photo interrupter drawing and
schematic and wire up your circuit before looking at the wiring diagram provided further
below.

If you don’t have a 330 resistor a 220 will do. If you don’t have a green LED, any other colour will
do.

Photo Interrupter drawing and schematic (note that the schematic is the view from the bottom)

© Dr Terry Brown, School of Mechanical & Mechatronic Engineering, FEIT, UTS Page 23 of 30

Photo Interrupter wiring diagram

• Place your student card or something similar in the photo interrupter slot.

• What happens to the LED?

3.2.4 Exercise 4: Line trace sensor
In this exercise you will use a line trace sensor to detect an object or an edge. This is a very useful
sensor that can be used to monitor start and finish lines. You’ll be using one in your wind powered
vehicle project.

• Find the line trace sensor module in your mechatronics kit

• Create the circuit shown below to power the line trace sensor.

• Place your student card (or something similar) in front of the sensor to observe the
sensor’s onboard red LED light up

• Turn the potentiometer to adjust the sensor sensitivity. Investigate and observe how this
affects how close to the sensor the object is detected. Test different surface finish objects.

© Dr Terry Brown, School of Mechanical & Mechatronic Engineering, FEIT, UTS Page 24 of 30

3.2.5 Exercise 5: Line trace sensor with serial plotter
In this section we’ll write some code to interface with the line trace sensor module and use the
Arduino’s serial plotter.

• Add a connection from the sensor’s signal terminal to the analog pin A0 as shown below .

 or

• Create a new Sketch called LineTraceSerialPlotter and then cut and paste and upload the
following code.

/*

Line Trace Serial Plotter

UTS 48610 - Introduction to Mechanical and Mechatronic Engineering

Written By Peter de Jersey

Any Questions? Google it before asking your tutor.

*/

#define Analog_Pin A0

unsigned long oldMillis; // this stores the last value of millis when the Serial

monitor printed the value of A0

void setup()

{

 Serial.begin(19200);// this connects the serial port

 pinMode(Analog_Pin, INPUT);// this sets the pins mode to an input

}

void loop() {

 int reading = analogRead(Analog_Pin);

 Serial.println(reading);

 delay(20);

}

After you’ve uploaded the code, open the serial plotter. This is an extremely useful tool that allows
you to plot information from the serial port. See below:

© Dr Terry Brown, School of Mechanical & Mechatronic Engineering, FEIT, UTS Page 25 of 30

Once you’ve opened the serial monitor you will see a graph that updates continually. It will look
something like this:

Note that you may need to change the baud rate to match the setting in the code. You may also see
a bit more ‘noise’ on the high signal depending on your computer and other electronic noise sources.

Here you can see the value of the line trace module. When the sensor does not detect a reflection
the value is high. When it does, it is low. The high value will depend on your sensor’s calibration. This
can be changed by adjusting the potentiometer on the board with a screw driver.

1. Find a white/light reflective surface (e.g. your student card) and bring the sensor close to it
2. The sensor will detect a reflection. The red LED on the circuit board will also light up.
3. Find a black surface and bring the sensor close to it. The light should turn off. Your computer

keyboard can work well if your computer is white and your keys are black. Otherwise think
creatively of what else you could use.

© Dr Terry Brown, School of Mechanical & Mechatronic Engineering, FEIT, UTS Page 26 of 30

Think about how this might be used to detect the start and stop lines on your WPV track.

3.2.6 Exercise 6: Line trace sensor with digital output to control a LED
In this exercise you will use a line trace sensor to detect and count the number of times an object or
an edge is detected and to control a LED.

• We will connect a digital pin (8) to read the line trace sensor’s output and use that output
to control a LED connected to another digital pin (13).

• Create the circuit shown below.

© Dr Terry Brown, School of Mechanical & Mechatronic Engineering, FEIT, UTS Page 27 of 30

• Check that the line trace sensor is working by observing the onboard red LED light up
when you bring your student card close to the sensor.

• Create a new sketch and copy, paste and upload the following code.

/*
Line Trace Detection
UTS 48610 - Introduction to Mechanical and Mechatronic Engineering
Written By Terry Brown

Modified from StateChangeDetection
 created 27 Sep 2005
 modified 30 Aug 2011
 by Tom Igoe

State change detection (edge detection)

 Often, you don't need to know the state of a digital input all the time, but
 you just need to know when the input changes from one state to another.
 For example, you want to know when a button/sensor goes from OFF to ON. This is called
 state change detection, or edge detection.

 This example shows how to detect when a button or sensor changes from off to on
 and on to off.

 The circuit:
 - see 48610 IMME Mx tutorial
*/

// these constants won't change:
const int lineTraceInput = 8; // the pin that the line trace sensor is attached to
const int ledPin = 13; // the pin that the LED is attached to

// Variables will change:
int lineTraceCounter = 0; // counter for the number of line trace sensor changes
int lineTraceState = 0; // current state of the line trace sensor
int lastlineTraceState = 0; // previous state of the line trace sensor

void setup() {
 // initialize the line trace sensor pin as an input:
 pinMode(lineTraceInput, INPUT);
 // initialize the LED as an output:
 pinMode(ledPin, OUTPUT);
 // initialize serial communication and set the baud rate:
 Serial.begin(9600);
}

void loop() {
 // read the line trace input pin:
 lineTraceState = digitalRead(lineTraceInput);

 // compare the lineTraceState to its previous state
 if (lineTraceState != lastlineTraceState) {
 // if the state has changed, increment the counter
 if (lineTraceState == HIGH) {
 // if the current state is HIGH then the line sensor went from off to on:
 lineTraceCounter++;
 Serial.println("on");
 Serial.print("number of line trace sensor hits: ");

© Dr Terry Brown, School of Mechanical & Mechatronic Engineering, FEIT, UTS Page 28 of 30

 Serial.println(lineTraceCounter);
 } else {
 // if the current state is LOW then the line sensor went from on to off:
 Serial.println("off");
 }
 // Delay a little bit to avoid bouncing
 delay(50);
 }
 // save the current state as the last state, for next time through the loop
 lastlineTraceState = lineTraceState;

 // turns on the LED every four line sensor 'hits' by checking the modulo of the
 // line sensor hit counter. the modulo function gives you the remainder of the
 // division of two numbers:
 if (lineTraceCounter % 4 == 0) {
 digitalWrite(ledPin, HIGH);
 } else {
 digitalWrite(ledPin, LOW);
 }

}

• Check that the line trace sensor is working by observing the onboard red LED light up
when you bring your student card close to the sensor.

• Upload the following code.

• Start the serial monitor. If you see something like the following you will need to change
the baud rate to that specified in the code. Find where the baud rate is set in the code.

• Once you set the correct baud rate you should see the following (if the line trace sensor is
not detecting anything)

• Now use your card to ‘trigger’ the sensor several times.

• You should see something like the following

• You will also see the LED connected to pin 13 turn on and off intermittently. See if you can
interpret the code to understand what is happening.

© Dr Terry Brown, School of Mechanical & Mechatronic Engineering, FEIT, UTS Page 29 of 30

• When writing this code I modified open source code based on using a push button, hence
“on” and “off” as output. See if you can adjust the code so that it outputs “detected” and
“not detected” instead.

3.2.7 Exercise 7: WPV desktop prototype
You have now used all of the components that you will use for your data acquisition module for your
wind powered vehicle. It is good practice to create desktop prototypes of electronic control modules
before installing them in a device. In practice we would also create printed circuit board (PCB) from
our schematic rather than using a breadboard in an actual mechatronic device.

• Download from UTSOnline the WPV Mx module schematics and wiring diagram.

• Attempt to create a desktop prototype of the WPV Mx module

• Test your prototype to see if it works correctly

© Dr Terry Brown, School of Mechanical & Mechatronic Engineering, FEIT, UTS Page 30 of 30

Arduino coding cheat sheet
(there is a better resolution version of this on UTSOnline)

	1. Introduction
	2. Week 9
	2.1 Background
	2.1.1 Learning Arduino
	2.1.2 Electronics Fundamentals
	2.1.3 Installing the Arduino IDE
	2.1.4 Wiring
	2.1.5 Resistors
	2.1.6 LEDs
	2.1.7 Schematics

	2.2 Tutorial Exercises
	2.2.1 Exercise 1: Simple LED Circuit
	2.2.2 Exercise 2: LED Challenge
	2.2.3 Exercise 3: Blink
	2.2.4 Exercise 4: Blink the LED on breadboard
	2.2.5 Exercise 5: Blink SOS
	2.2.6 Exercise 6: Add a Pushbutton to turn LED on and off
	2.2.7 Exercise 7: Add a Pushbutton to Blink SOS
	2.2.8 Exercise 8: Potentiometer with LED
	2.2.9 Exercise 9: Potentiometer challenge

	3. Week 10
	3.1 Background
	3.1.1 Learning Arduino
	3.1.2 Electronics Fundamentals (~ 40 mins)

	3.2 Tutorial Exercises
	3.2.1 Exercise 1: Use a Potentiometer to Generate an Analog Signal
	Code for PotRead sketch
	3.2.2 Exercise 2: Use Analog Signal
	3.2.3 Exercise 3: LED and Photo Interrupter
	3.2.4 Exercise 4: Line trace sensor
	3.2.5 Exercise 5: Line trace sensor with serial plotter
	3.2.6 Exercise 6: Line trace sensor with digital output to control a LED
	3.2.7 Exercise 7: WPV desktop prototype

	Arduino coding cheat sheet

